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Abstract

An efficient analytical alternating method is developed in this study to investigate the transient thermal conduction
problem of a finite plate with multiple insulated cracks. Analytical solutions of rectangular plates subjected to a point
temperature and a point temperature gradient on boundaries are derived to construct the full field solutions of rec-
tangular plates under arbitrarily distributed thermal loadings by Gauss integration. By using these analytical funda-
mental solutions, the analytical alternating method is applied to obtain the full field temperature distribution
of rectangular plate with multiple cracks. The temperature distribution of a finite plate with multiple insulated cracks
in steady state are compared with the results obtained by other researches and excellent agreements are shown.
The transient temperature distribution of a finite plate with multiple insulated cracks are obtained and discussed in

detail. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The safety assessment of structures in harsh thermal
environments is of increasing design engineers. It is
known that components work under high temperature
variation usually give rise to defects or cracks. When the
structure is subjected to an improper thermal condition,
the heat flow will be disturbed by the cracks. The high
intensification of the transient temperature gradient will
induce thermal stress that may cause rapid linkage of
several small cracks into one large crack. Although each
individual crack may be considered safe within the
damage tolerance of the structure, damages to the
structure can be caused by the interaction of multiple
cracks in the structure. Hence the development of ana-
lyzing methods that can accurately estimate the tem-
perature distribution of structures with multiple cracks
is needed.

In the literature, there are many available results for
the transient analysis of a cracked plate under thermal
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boundary conditions. Emery et al. [1] computed the
transient thermal stress intensity factor (TSIF) for an
edge crack in a finite plate subjected to heat flow by
FEM. Nied [2] discussed the problem of an edge-cracked
strip with convective cooling or heating on the side of
the plate containing the crack and insulated on the other
side. It was shown that surface heating might induce
compressive transient thermal stress in the plate surface,
which will force the crack surface contact together over
a certain length. Similar problem was also studied by
Rizk [3,4] and unique results were obtained. A ramp
function that is more realistic than a step function was
assumed at the boundary by Rizk [4]. Rizk and Radwan
[5] studied a cracked semi-infinite plate subjected to a
sudden cooling on the surface in the form of a ramp
function. Kokini and Reynolds [6] analyzed the transient
behavior of an interface crack located at the center or
edge of two finite dissimilar materials under thermal
boundary conditions by FEM. Lee and Hong [7] com-
puted the transient TSIF for a finite plate with a central
cusp crack by BEM. Magalhaes and Emery [8] studied
the transient effect of thermal boundary conditions on
the propagation of cracks in a brittle substrate caused by
residual tension in a brittle film using a finite element
approach. As the cases mentioned above, the subject
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Nomenclature

half length of the crack [m]
temperature gradient [°C/m]

initial temperature in the plate [°C]
half height of the rectangular plate [m]
half length of the square plate [m]
heat flux vector [W/m?]

time [s]

temperature [°C]

half width of the rectangular plate [m]
y Cartesian coordinates [m]
eigenfunctions

complex variable

complex functions

~ 8
'S)

O I I
~<

Zm, Zm

Greek symbols

o thermal diffusivity [m?/s]

B,y eigenvalues

1) unit impulse function

K thermal conductivity [W/(m°C)]
0 the inclined angle of the crack
Subscripts

b bottom boundary of the plate
ci the crack i

h homogeneous transient problem
1 left boundary of the plate

r right boundary of the plate

] steady state problem

t top boundary of the plate

seems limited to the transient thermal fracture analysis
of a finite structure with a single crack. The transient
analysis of a finite body with multiple cracks under
thermal boundary conditions has not been discussed yet
due to the great complexity of the problem.

Tsai and Ma [9] developed a new formulation of
thermal weight function to determine TSIF for the
thermal fracture problem. The thermal weight function
is a universal function for a given cracked geometry and
is independent of applied loads. For a finite cracked
structure, if the thermal weight function is obtained
from a simple loading case, the TSIF can be computed
by integrating the thermal weight function and tem-
perature distribution. This method can be extended to
evaluate the transient TSIF by replacing the temperature
distribution with transient temperature distribution.

The purpose of this work is to develop an accurate
and efficient method to analyze the transient thermal
conduction problem of a finite plate with arbitrarily
located multiple insulated cracks. For the steady-state
case, Chen and Chang [10] employed a finite element
alternating method to calculate the temperature dis-
tribution on a finite plate with multiple insulated
cracks. The same problem was also studied by the
boundary element alternating method by Chen and Tu
[11].

In the analysis of thermoelastic fracture problem, the
analytical solutions are available only for simple prob-
lems with specific boundary conditions. The finite el-
ement method is a powerful numerical technique for
thermal fracture analysis, but the accuracy of the solu-
tions computed by FEM is largely mesh-dependent. The
Schwartz—Neumann alternating technique [12] was in-
troduced to overcome the shortcomings of FEM in
dealing with multiple crack problems. Essentially, the
alternating method is a linear super position method.
The complicated cracked finite body solution can be
obtained by iterating between the solution for the non-

crack finite body, and the solution for an infinite body
with a crack (or cracks). Various methods are used to
solve the sub-problems of non-crack body lead to vari-
ous characteristics of Schwartz-Neumann alternating
methods.

The analytical alternating methods utilized analytical
solutions for both a non-crack plate, as well as for the
cracks in an infinite plate. Early applications of analyt-
ical alternating method involve the edge crack problem
in a semi-infinite plate [13] and the surface crack in a 3D
body [14]. The method was used later by O’Donoghue
et al. [15] to solve the multiple embedded elliptical cracks
in an infinite body. Zhang and Hasebe [16] studied the
interactions between rectilinear and -circumferential
crack in an infinite domain. However, the previous re-
search about analytical alternating method were re-
stricted to the problem of simple geometry. The finite
element alternating method (FEAM) and boundary el-
ement alternating method (BEAM) extended the appli-
cations of alternating technique to complicated cracked
geometries. In the absence of crack, FEM or BEM can
easily obtain the numerical solution of the non-crack
finite body with a coarser mesh.

In this study, we consider the transient thermal
conduction problem of a finite plate with multiple ar-
bitrarily located cracks subjected to distributed tem-
perature or thermal flow on the external boundaries.
The transient full field temperature distribution of the
cracked plate is computed by analytical alternating
method. To our knowledge, this is the first application
of the alternating technique to the transient thermal
conduction problem. On the purpose of comparing with
previous results, the steady-state problem of a square
plate with two inclined insulated cracks is considered
and good agreement is obtained. Finally, results of
several transient thermal conduction problems with
different boundary conditions are shown and discussed
in detail.
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2. Analytical fundamental solutions in steady state

In the literature of Schwartz—Neumann alternating
method, various types of analytical solutions were used
to analyze different problems. Polynomial and Cheby-
shev polynomial distributions are mostly demonstrated
to simulate the continuously distributed loads. For the
discontinuously distributed loads, the point loads or
piecewise distributed loads could precisely describe the
large variation of the crack surface loads in the ultimate
case of two closed cracks. For simplicity and versatility,
all of the analytical solutions presented in this section
are point load solution.

2.1. A finite crack in an infinite plate

Fig. 1 shows an infinite plate with a finite crack lying
along the x-axis. The center of the crack is located at the
origin and the crack length is 2a. The crack face is
subjected to a point temperature gradient impulse in the
y-direction at x = b, that is

oT
where T(x,y) is the temperature and d(x — b) is a unit
impulse at x = b. The governing equation of a heat
conduction problem is similar to the two-dimensional
anti-plane mechanics problem. Hence, from the well-
known complex variable method, the complex functions
are found as

1 N/

Zm:*aia (23)
T (z—b)VZ2—a®

_ 1. ,[bz—a?

ZIII—ESIH {a(z—b)} (2b)

where z = x + iy, the full field temperature distribution
and temperature gradients for the infinite plate can be
expressed as

=ImZy = Im{ l sin”~ UJ(ZZ__[ZZ)] }7 3)

[ = X
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2a

Fig. 1. Point temperature gradient is applied on the crack face
of an infinite plate.
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For a homogeneous isotropic solid, the heat flux vector
is given as q(x,y) = —xfii— «kf,j, in which x is the
thermal conductivity of the material. The solutions pre-
sented in Egs. (2a), (2b), (3), (4a), (4b) are valid only for
an antisymmetric temperature distribution.

For the crack face, that is, subjected to an arbitrarily
distributed temperature gradient f,(¢), the solution can
be constructed by integrating the product of f,(£) and
the Green’s function of temperature gradient impulse
applied on the crack face. Piecewise Gauss’s integration
is used to precisely describe the high variation of crack
face condition. The crack face is divided into 5 sections
and 24 Gauss points are distributed on each section. The
highly concentrated integral points ensure the precision
of the complicated problem particularly for the case
while the crack tip is either close to the boundary or
another crack tip.

2.2. Rectangular plate with different boundary conditions

Consider a rectangular plate as shown in Fig. 2, w
and / are half of the width and height of the plate, re-
spectively. The temperature is zero at the left boundary,
and the normal temperature gradient is zero at both the
top and bottom boundaries. A temperature impulse is
applied on the right boundary, the steady-state heat
conduction equation and the boundary conditions for
this problem are expressed as follows:

*r T
@'ﬁ‘a—yzfo, 0<x<2w, 0<y<2h, (Sd)
oT(x,0
£(x,0) = 0 o g<x<om, (5b)
oy
T(x,2
filx,2h) = w =0, 0<x<2w, (5¢)
y
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Fig. 2. Point temperature applied on the right boundary of a
rectangular plate.

T(0,5) =0, 0<y<2h, (5d)
T(2w,y) =d(y —n), 0<y<2h (5e)

The solution of full field temperature distribution on the
rectangular plate is

x & cos((nmy)/2h)
T(x,y) = s Z hsinh((nnw)/h)

n=1

nmy\ | n nmx 6
XCOS(Zh)Sm (ﬁ) (6)

and the temperature gradients are

nn cos((nmn)/2h)

Jod) = G 2 202 simh((nw) /)
X COS <n27;ly) cosh (%)’ 7a)
© —nT COS((”n”)/zh)

fxy) = 2 2 sinh((nmw)/h)

o onmyN nmx

X sin (ﬁ) sinh (E) (7b)
Table 1 shows the fundamental solutions of temperature
distribution for four types of boundary-value problems.
If the temperature impulse or the point temperature
gradient is applied on the other boundary, the solution
can be obtained from Table 1 by appropriate replace-
ment of variables.

The temperature gradients of the cases I-III in
Table 1 can be derived from the presented temperature
solutions. For the general case with distributed tem-
peratures 7;(2w,y) and 7j(0,y) on the right and left
boundaries, and temperature gradients f;(x,24) and
fv(x,0) on the top and bottom boundaries, the full field
temperature distribution can be constructed by inte-
grating the solutions shown in Table 1(Ia) and (Ib) as

smw:A[MMM&m%m

+ T](O, n)Slb(xvyv n)] dﬂ
2w

+ [ﬂ(f,zh)slc(xv.% 6)

0

+fb(é7 O)Sld(x7y> é)] dé7 (8)

where St (x,»,1),Sw(x, ¥, 1), S1c(x,», &), and Sy(x,y, &)
are the fundamental solutions presented in Table 1 (Ia)
and (Ib). A piecewise Gauss’s integration is utilized in
Eq. (8), each side of the plate is divided into 5 sections
and Gauss points are distributed on each section.

3. Analytical fundamental solutions of transient problems
for rectangular plates

If the transient heat conduction problem is non-
homogeneous due to the non-homogeneity of boundary
conditions, the original problem can be decomposed
into several simple problems that can be solved by the
separation of variables [17]. They are:

(1) A non-homogeneous steady-state problem with
solution described by 7Ti(x,y).
(i) A homogeneous transient problem with solu-
tion described by T;(x, , t).
A rectangular plate as shown in Fig. 3 is considered in
the transient analysis, where 2w and 2/ are the width
and height of the plate, respectively. The mathematical
formulation of this problem is given as

T T _1ar

—4=—=-—=, 0 2w, 0 2h 9
6x2+6y2 e <x<2w, 0<y<2h, (9a)
T =0 0<y<m (9)
x

oT

a_:f07 XZZW, 0<)’<2h, (90)
x

T=-T, y=0,0<x<2w, (9d)
T=T, y=2h 0<x<2w, (9e)
T=F(x,y), fort=0,0<x<2w, 0<y<2h, (9f)

where o is the thermal diffusivity.
The original problem can be decomposed into a non-
homogeneous steady-state problem given by

T,  O°T.

D B Wl R 2 2 1
ax2+ay2 0, 0<x<2w, 0<y<2h (10a)
T

aa—:f()7 x=0, 0<y<2h, (10b)
X

0Ty

6_:f0’ x=2w, 0<y<2h, (10c)
X

I,=-T, y=00<x<2w (10d)
Ih=T), y=2h 0<x<2w (10e)

and a homogeneous transient problem given as
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Table 1
Solutions for four types of boundary-value problem for rectangular plates

2427

Neumann condition on top and bottom boundaries, Dirichlet condition on right and left boundaries

Yoo
S -
S =
i
Ia. = =< cos((nnn
T(x
S = Z hsinh((nmw)/h)
&~ X
£=0 2w,0)
y S=8-Y
St
S T
Ib. o ii (nm&)/(2w))
& ! 2 nmsinh((nzh)/w)
X
£=0  @w0)

cos((nm) /(2h)) COS(@)

. /nmx
sin ( — ) cos
2w

sinh (%)

2h

"(3)

Dirichlet condition on top and bottom boundaries, Neumann condition on right and left boundaries

—_ Y T=0
3
S z
Ma. _ 77 = 2 sin((nmn)/(2h)) . /nmy nmx
T(x,y) =) — ————"—~—=5sin(——~) cosh( ——
2 iri‘q ; nn sinh((nmw)/h) ( 2h ) ( 2h )
X
T=0 (Qw0)
y  T=8(c-)
o i
S
IIb. o _ Y N cos((nmé)/(2w) AT\ . HTY
S J‘; T(y) = 4wh + ; wsinh((nmh)/w) €08 ( 2w ) sinh ( 2w )
& X
=0 @w,0)
Dirichlet condition on four boundaries
¥ 1=0
S
S G
i
Illa. = _ - sin((nmy)/(20) . ommpy nmx
T:;L T(y) = < sinh((nmow) /h) n( 2h ) Smh( 2h )
=~ l . =
r=0 (2w0)
T=38(x-£)
Y
i
=2
IIIb. o =~ sin((nn&)/(2w)) nmnx nmy
S e T(x.) Ewsmh nmh)/w) n<2w) Smh(zw)
&~ x
T=0  (2w,0)
Neumann condition on four boundaries
S G
s Vgm0 &
= . 1 > cos((nmn)/(2h)) nmy
Va. & i + S 2) = 357 2 rsinh () /) o5 ()
17 ! )
3 = nnx w nm(x — 2w
& lx X {smh(yl) — (—1)"sinh (TN
5£H=0 @2w0)

(continued on next page)
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Table 1 (continued)
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Neumann condition on top and bottom boundaries, Dirichlet condition on right and left boundaries

5H(xp)

y A=86-9)

o

(0,2h)

=4
Il
&

IVb.

£=0

i X

F—t—
= 8(x-2irg) B0

fv(x’y) =

n=1

X {cosh <n2r;lx) (- 1)"cosh<

>~ —cos( mré 2w))
fi(x,) :Z wsin nrch/ )

n=

— cos((nmn)/(2h))

hrsinh((now) /) S0 ("fhy)

nn(xzz 2w) )}

sin (%)

) {COSh (%) — (= 1)"cosh (W)]

1

2w

X {sinh (?) — (= 1)"sinh (nn(yz——
w w

‘zx: cos((nn&)/(2w) cos (nr:x)

— wsinh((nmh)/w) 2w

“)

T Y 7= 17y 50

T=Fx y),t=0 |,t>0

X

—_—

T=-To.>0 (2w, 0)

Fig. 3. The transient problem of a rectangular plate with pre-
scribed boundary and initial conditions.

T, G’Th 10T,

—-— —, 0 2w, 0 2h 11
2 T T aar <x<2w, 0<y<2h (lla)
Ty

—0, 0<y<2h, 11b
Py , 0<y (11b)
oT;,
— = = <y<
o 0, x=2w, 0<y<2h, (Ilc)
h=0 y=0,0<x<2w, (11d)
h=0, y=2h 0<x<2w (Ile)
with initial condition T; = F(x,y) — Ii(x,y) = F*(x, ),

fort =0, 0 <x < 2w, 0 <y < 2h. The solution for the
original problem of Egs. (9a)—(9f) is determined from
the two solutions, T;(x,y) and Ty(x,y,), as

T(x7y7 t) = Ts(xvy) + Th(x’yv t)

The solution of the steady-state problem described in
Eqgs. (10a)—(10e) is given as

(12)

4h fo

—To+— +Z -1)]

[ _
sin((kmy)/2h) kmx
sinh((kmw/h) {COSh (ﬁ)

st (kn(x ~2w) )]

2h
The general solution of the transient problem described
in Egs. (11a)—(11e) can be written as

00 00 A
(X, p,1) = Z Zc e Btmlix (B )Y (y,,y), (14)

m=0 n=1

Ii(x,y) =

(13)

where the eigenfunctions X(f,,x) and Y(y,,») and
eigenvalues f3,, and y, are given by

X(Bysx) = cos(fyx), By = % m=0,1,2,..., 00,
(15a)
nm
Y(’y)l’x)zcos(’ynx)7 ’yﬂ:ﬂ7 n: 1727"'7<X> (ISb)
The initial condition is rewritten as
Th:F()Qy)* :Z ZcmnX /n?y)
m=0 n=1
(16)

The unknown coefficient ¢, can be determined by op-
erating both sides of Eq. (16) using operators

2w 2h
X(By.x) d, / Y(70,) dy. (17)
0 0

By utilizing the orthogonality of eigenfunctions, c,, is
expressed as
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1 2h 2w //_ o)
ST (el A ANCCRORE R (18)

x cos(B, ) sin(3,0/) d¥’ dy/,
where

M(B,) = /OZW cos? ( >dx’ = {
N(y,) = /OZh sin’ (%)dy’ =h

Special case. If the initial temperature is zero (i.e.
F(x,y) = 0) in the whole region, the coefficient becomes

2h 2w ) nm y/ ,
Con = 2wh / (x,») sm( 7 )dx dy’
2To

Cimn

mnx'

2w

m=20
m#£0

2w,

w,

n+#0

SO -] n=1200, (19)
1 2h 2w mnx'
Cnn —%/0 /0 —Ti(x,y) cos( S )
X sin<n;—y/) dx’ dy
my 870 (19b)
—Zuf Sl = (1))
% Wh bnk
(R2m2 + wk?)’
m=12,...,00, n=1,2,...,00

and the homogeneous transient solution is

2T, m e (ATYN ot 2
Ti(x,7,1) = Z—“u + (=1)]sin () e (/@

n=1
F303 = (1l - (1)

m=1 n=1
" wh? cos (mnx)

(R2m? + w?n?) 2

i (T e dlilmm)/ @)Y+ {(nm)/(21)) )
><s1n<2h)e . (20)

Transient state for time ¢

2429

The original problem with zero initial temperature be-
comes

4hfo

TO oC
~To+— v+
h k=1 (k

ksin((kmy)/(2h))
(1= (=1)] sinh((know) /)

nx) " eosh (kn(x —2w)

5 5

<@) e (mm)/(2n)Ye
2h

T(x,y,t) =

L

« sin <%> e/ @0 +{em)/ @0 ()

4. Analytical alternating method for transient heat
conduction problems with multiple cracks

In this section, the analytical alternating method will

be developed to analyze the transient thermal conduc-
tion problem with multiple cracks. In order to illustrate
the proposed alternating procedure, a rectangular plate
with multiple insulated cracks in Fig. 4(a) is considered.
At time ¢ = 0, constant temperatures 7; and T, are ap-
plied on the top and bottom boundaries, and normal
temperature gradients f, and f; are applied on the right
and left boundaries. The initial temperature is zero in the
full field of the cracked plate. By the principle of
superposition, this complicated transient heat conduc-
tion problem can be solved by the iteration of several
simple problems as indicated below.

1. At time ¢, the transient temperature distribution of
the original problem (Fig. 4(a)) can be superposed
by a transient problem without crack and a steady-
state problem with cracks as shown in Figs. 4(b)

Transient state for time ¢

- Steady state
T=T,,t>0 =T, >0 =0
o
< o
A - — /‘lﬂ o fc(lo_) ______ 5(20 ! z fc<lo> f<0) m
< : & o= QT T R o ~ s
[ / I <2 3 =
q Q ny e 0 Il 1l ©)
= cn 2 \'Q Jcen
T=T,,t>0 =T, t>0 7=0
(@ (b) ()

Fig. 4. The alternating method of transient heat conduction.
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Fig. 5. Alternating method of a finite plate with multiple cracks.

and (c), respectively. First, solve the transient non-
crack plate in Fig. 4(b) with the same geometry and
boundary conditions as the original problem of
Fig. 4(a), this problem has been discussed in the pre-
vious section. Evaluate the residual normal tempera-
ture gradient fc(,-o) (i=1,2,...,n) at the locations of
the fictitious crack i for time 7. Since the crack’s faces
are insulated, the normal temperature gradient ﬁsp) at
cracks i=1,2,...,n are superposed as shown in
Fig. 4(c) to satisfy the zero heat flux across the crack.
. The steady-state problem of the cracked plate as
shown in Fig. 4(c) (or Fig. 5(a)) can be further split
into the following problems.
(a) Fig. 5(b) shows an infinite plate with multiple
cracks and subjected to the same temperature
gradients on the crack faces as shown in
Fig. 5(a). Evaluate the residual external boundary
conditions (", 7", 7@, £”) on the virtual
boundaries as the original plate by the internal it-
eration procedure of the alternating method which
will be described later. The residual boundary con-
ditions could be superposed reversely by Fig. 5(c).
(b) Now, the solution of Fig. 5(c) can be obtained
by the solutions of Figs. 5(d) and (e). Fig. 5(d) is
the steady-state problem of the non-crack plate
with distributed external boundary conditions
(-1, -1, — £ —£©) Utilizing the analytical
solutions presented in Table 1(Ila) and (IIb), the
solution of Fig. 5(d) can be obtained by integrat-
ing the product of the Green’s function solutions
and the distributed external boundary conditions

3.

(-1, =1, —£© —£) The problem for ap-
plied residual temperature gradient f(.(,-l) on the
crack face in Fig. 5(e) will be preceeded in the next
(external) iteration of alternating procedure.
In the iteration procedure, the solution of an infinite
plate with multiple cracks as shown in Fig. 5(b) can
be constructed by the procedure indicated in Fig. 6,
in which ﬁ,(io) in Fig. 6(a) is the normal temperature
gradient of the crack i of an infinite plate. The solu-
tion of Fig. 6(a) could be obtained by the following
internal iterations.
(a) Consider an infinite plate containing a single
crack j and the crack face is subjected to a normal
temperature gradient fc(;)), and evaluates the nor-
mal temperature gradient fc(,-(/)-) of the fictitious
crack i.
(b) Superpose the total solutions of the problems
with single crack i (i = 1-n) and the residual tem-
perature gradient of crack i is found as

M) _ N0

8ei cij (22)
j=1
J#i
for the &'th cycle of the internal iteration
k+1 < k
gf'i+ )= Zgiz/) (23)
=

J#
(c) After several cycle of iterations, the residual

temperature gradient gﬁf“) approaches zero, then
the solution of Fig. 6(a) could be obtained by
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Fig. 6. Alternating method of an infinite plate with multiple cracks.

combining the solutions for infinite plates with a
single crack subjected to the normal temperature
gradient g,; as

gi=Ju ) g% (24)
=1
(d) The convergent criterion is taken as
() _ ()
i Bd 107, =1 (25)
2

5. Numerical results and discussions

Example 1 (Steady-state temperature distribution of a
finite plate with two inclined insulated cracks). A square
plate containing two inclined insulated cracks that are
located symmetrically to the y-axis and subjected to
constant temperatures 7y and —7; on the top and bot-
tom boundaries is considered first. The right and left
boundaries are insulated. The length of these two cracks
is 2a and the width of the square plate is 2/. The distance
between the centers for these two cracks is 2e and 6 is the
inclined angle of the crack. The geometric configuration
of this problem is shown in Fig. 7. The temperature
fields for the cases of a//=0.3,¢/l=0.33, and
0 = 0°,60°,90°,120° are investigated, and the contours
of constant temperature are shown in Fig. 8. Chen and
Chang [10] also analyzed the same problem by finite
element alternating method in which 24 eight-node iso-
parametric quadrilateral elements were used to compute
the non-cracked finite plate, and a third-order poly-
nomial function was used to simulate the crack-face heat

21 2a //ﬁe X
M
2e
5T: 6T:0

ox ox

T=-T,
21

Fig. 7. A square plate with two inclined insulated cracks.

flux in an infinite plate. For the present calculations, 120
Gauss’s integral points are distributed on each side of
external boundaries and on each crack face. Excellent
agreements are found between the present analytical
alternating method and the finite element alternating
method, as shown in Fig. 8.

Example 2 (Steady-state temperature distribution of a
finite plate with two insulated cracks and prescribed
temperature on four sides of the plate). In order to ex-
amine the interaction between cracks and the boundaries
of a plate, a square plate with two insulated cracks is
subjected to 7 = Ty and T = —T; at the top and bottom
boundaries and 7 =0 on both the right and left
boundaries is considered. The geometric configuration of
this unsymmetrical problem is shown in Fig. 9. The
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TIT,=0.8

L -0.8
3+
| L Il L L L 1 L | | |
-3 -2 -1 _;./a 1 3
(c) & =90°
present method

T/T,=0.8

@0 =120°
[10] Chen and Chang

Fig. 8. The steady-state temperature distribution of a plate with two inclined insulated cracks.

length of the square plate is 2/ and lengths of both cracks
are 2 a, the centers of the two cracks are located at
(—a/2,—a/2) and (a/2,a/2) , respectively. The full field
temperature  distributions  for the cases of
I/a =2,0°=0° and 45° are shown in Fig. 10. Since the
crack length is long, the temperature distributions are

strongly influenced by the interactions between two
cracks and boundaries. The high intensity of the
temperature contours around the corners of the plate in
Fig. 10 interprets the discontinuity of the temperature
around the corners under the given temperature con-
ditions.
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T="Tp Yy

Fig. 9. The unsymmetrical steady-state problem of a square
plate with two inclined insulated cracks.

Example 3 (Transient temperature distribution of a finite
plate with two inclined insulated cracks). The cases of a
finite plate with two arbitrarily located insulated cracks
are presented to demonstrate the versatility of this
method. A square plate with two inclined insulated
cracks as shown in Fig. 11 is considered. The initial
temperature of the plate is 7, = 0. At time ¢ = 0, the top
and bottom boundaries are subjected to constant tem-
peratures of T = Tj and T = —Ty, respectively, and both

TM=0.$9
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2 Ei
~—1_07 1 0.5 /

0.1 \Q 0.5 ARy

~

|

0.1
03/ 05 \0'

1 \
/ RN
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I

2 1 0
x/a

(@8 =0°

-
N

T=Ty,t>0 |y

X
21
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a Tt
ax
t>0 >0
T;=0,=0
T=-Ty,t >0
21

Fig. 11. Transient analysis of a square plate with two inclined
insulated cracks (fo = To/1).

the right and left boundaries are subjected to the tem-
perature gradient of 07 /0x = fy The solutions for the
case of //a =2,0 = n/4 and f; = T,/I (the crack centers
are respectively located at (—a/2,—a/2) and (a/2,a/2)
are calculated. As shown in Figs. 12-14, the transient
temperature and transient temperature gradient ap-
proach the steady-state solution at dimensionless time
(ter)/a® = 4. The high intensity of temperature gradient
contours around the crack tips in Figs. 13 and 14

2 — =09 L —
\ ~—— 07 0583/ /
4
\Q1 03 s | 01
N ~o | |
8 0.
-0.1 0. \ 0.1
y —e |\
0.5 0.3
-1 — \
[ 0.5 \
— 07

2
2 -1
x/a

(b) 6 =45°

Fig. 10. The steady-state temperature distribution of a plate with two inclined insulated cracks for prescribed temperature on four

boundaries of the plate.
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to/a* = 0.125 toala*=0.5

2 1 1 . 1

-2 -1 0 1 2 -2 -1 0 1 2
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(c) (d)

transient state
————— steady state

Fig. 12. The transient temperature of a plate with two inclined insulated cracks (fy = Tp/1).

interpret the singularity of the temperature gradient (120 x 120) points on the cracked plate are computed.
around the crack tips. In order to provide a high res- For this complicated case, the computing time is less
olution temperature contour, a total number 14400 then 20 min on an Intel Pentium II 300 MHz PC.
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6. Conclusion

By using the predetermined analytical fundamental
solutions, an analytical alternating method is utilized to
investigate the transient conduction problem of a finite
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g. 13. The transient temperature gradient (x-direction) of a plate with two inclined insulated cracks (fo = 7y/1).

plate with multiple cracks. All the steady-state funda-
mental solutions used in this study are Green function
solutions that can accurately describe the large variation
of the temperature gradient on the crack faces and the
boundary conditions of the finite plate. An efficient and
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to/a® =0.125

ta/a®=0.5

yjo.g

(d)
transient state

steady state

Fig. 14. The transient temperature gradient (y-direction) of a plate with two inclined insulated cracks (fo = Ty/1).

accurate Gauss’s integration method has been success-
fully developed to analyze the transient problem of a
finite plate with arbitrarily located multiple cracks. For
the numerical results of steady-state case, excellent
consistency between the present results and the available

reference solution is achieved. In the transient analysis,
the transient temperature distributions are computed for
cases of multiple cracks and different boundary con-
ditions. The interaction between the cracks and the
boundaries of the finite plate is observed and the char-



C.-Y. Chang, C.-C. Ma | International Journal of Heat and Mass Transfer 44 (2001) 2423-2437 2437

acteristic time for the transient solution approaches the
steady-state solution is also discussed.
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